On a Conjecture of Kottwitz and Rapoport

نویسنده

  • QËNDRIM R. GASHI
چکیده

We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur’s Inequality for all split and quasi-split (connected) reductive groups. These results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conjecture of Kottwitz and Rapoport for Split Groups

We prove a result involving root systems that implies a converse to Mazur’s inequality for all split groups, conjectured by Kottwitz and Rapoport (see e.g. [6]). This was previously known for classical groups (see e.g. [7]) and G2 (see e.g. [3]).

متن کامل

The Conjecture of Kottwitz and Rapoport in the Case of Split Groups

We prove a result involving root systems that implies a converse to Mazur’s inequality for all split groups, conjectured by Kottwitz and Rapoport (see [10]). This was previously known for classical groups (see [11]) and G2 (see [5]).

متن کامل

Vertexwise Criteria for Admissibility of Alcoves

We give a new description of the set Adm(μ) of admissible alcoves as an intersection of certain “obtuse cones” of alcoves, and we show this description may be given by imposing conditions vertexwise. We use this to prove the vertexwise admissibility conjecture of Pappas-Rapoport-Smithling [PRS, Conj. 4.39]. The same idea gives simple proofs of two ingredients used in the proof of the Kottwitz-R...

متن کامل

Formulas for the dimensions of some affine Deligne-Lusztig Varieties

Rapoport and Kottwitz defined the affine Deligne-Lusztig varieties X w̃ (bσ) of a quasisplit connected reductive group G over F = Fq((t)) for a parahoric subgroup P . They asked which pairs (b, w̃) give non-empty varieties, and in these cases what dimensions do these varieties have. This paper answers these questions for P = I an Iwahori subgroup, in the cases b = 1, G = SL2, SL3, Sp4. This infor...

متن کامل

The Combinatorics of Bernstein Functions

A construction of Bernstein associates to each cocharacter of a split p-adic group an element in the center of the Iwahori-Hecke algebra, which we refer to as a Bernstein function. A recent conjecture of Kottwitz predicts that Bernstein functions play an important role in the theory of bad reduction of a certain class of Shimura varieties (parahoric type). It is therefore of interest to calcula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009